
Data and Programming 
SQL, functions, ORM and ER 

Author: Tomasz Gil – consultant at Launch Consulting 

  

Introduction 
In recent years we have seen an increased interest in functional programming and a move away from 

focus on object orientation. 

While object orientation is an organization of information where elements of state are combined with 

operations, the functional approach emphasizes values. 

Values are the center of information and they are consumed and produced by functions. 

Object-orientation and functional (value-centric) orientation are presently somewhat at a standoff, and 

this article aims to clarify the position of each side and propose the most appropriate competence area 

for each side. 

  

  

The idea of this article are inspired by recent presentations and papers such as: 

• Sam Roberton -YOW! Lambda Jam 2019 -Functional Programming in ... SQL? 

https://www.youtube.com/watch?v=ZbJbnxQ6GiI 

• Rich Hickey –2012 - The Value of Values with Rich Hickey:https://www.youtube.com/watch?v=-

6BsiVyC1kM 

• CJ Date -"SQL and Relational Theory" - book 

• Post on jooq.com blog arguing against ORM 

 

The world of data is the world of values - reflecting the real world (to the degree of 

interest to the application at hand): 
Data has: 

• Structure: attributes, references, collections  

• Values: magnitudes, names, identifiers  

• Mutability: because the world changes 

  

Values are the primitive building blocks of data (as in primitive values) and are primarily 

• magnitudes - which can be compared to others and measured 

• names - which are whatever they need to be 



• identifiers - values that have meaning in construction of references 

  

Data structure leads readily to object orientation and converts structures into entities: 

• Type is a declaration of attributes and operations (methods)  

• Class is implementation of a Type  

• Object is instance of a Class  

• Method is invoked on an instance 

 

 

Object instance is referred to as entity and it permits mutations of values by designated methods. 

Type is the public definition of specific classes of entities - separated from the primitive value content 

and from operations. 

 

Functional programming and functions are around transformations of values. 
  

Functions transform values (and other functions): 

x,y,z,a,b,c  - values  

f,g,h - functions  

(x,y,z,g,…) <- f(a,b,c,h,…) 

 

 

A function takes values and other functions as arguments 

and returns new values and new functions. 

  

Type Class Object 

instance 
Method 

 Function 

 Value 

 Function 

 Function 

 Value 

arguments 
results 



Let us look at an example data model - Book, Author and BookSection 

  

It shows that a Book can have many Sections as well as many Authors. Authors can also be associated 

with multiple Books and BookSections. 

  

Here is how this data model will be seen as Entities: 

Class Book {  

Int ID  

String Title  

Date PubDate  

List<BookSection> sections  

  

AddSection(params...)   // a method that can be on a Service level 
class such as BookManager 

} 

 

Class BookSection {  

Int ID  



String Title 

Book book  

} 

  

Book and BookSection as Relations look quite different. 

Relations are subsets of cross-products of different domains. This is non-intuitive and requires some 

theoretical introduction which follows below. Relations are about tying together values from suitable 

domains to represent world-level entities. Some of these values have significance only in tying together 

two relations – this referential significance is apart from the substantive significance of attribute values 

such as book title, book section title and book publication date. 

In current database technologies relations occur as tables or table-valued data. Relation is really an 

extension of the notion of value. 

 

 Book 

Integer ID  string Title  Date PublicationDate 

 

BookSection 

 

Integer ID string Title Integer BookID 

 

Entity (ER) vs Relational approach can be illustrated in this Month sequence example. 

This is a simple example showing how each of our modes represents information 

Class MonthSequence{  

Int seq, 

String monthName }  

Instance1 = new MonthSequence(3, “March”) 

Instance2 = new MonthSequence(1, “January”) 

Instance3 = new MonthSequence(5, “May”)  

... 



 

vs 

3 March 

1 January 

5 May 

...  

 

In the relational approach all the Entities are grouped together in a Relation making it apparent that 

there are possible conditions of uniqueness, possible limits on the domain of values in each column. In 

the Entity model the bits of information are separated into individual instances sharing structure. 

Cross product of domains – what is it?  
  

Domain is a set of values of a certain (primitive) type suitable for a given representation. 

The month names are not just any strings - but only the strings that are names of months, and only the 

numbers 1-12 would be the month numbers. 

  

Let's take 3 domains - where values are a letter of the alphabet concatenated with a number: 

D1: [a-z]1 – meaning any letter followed by number 1 

D2: [a-z]2 - ... 

D3: [a-z]3 

  

Cross product D1xD2xD3 means all possible tuples - such as:  

D1 D2 D3 

a1 b2 d3 

a1 o2 m3 

b1 m2 x3 

 

There would be 26^3 of different tuples - or generally card(D1)*card(D2)*card(D3) - with card standing 

for cardinality of a domain. 



The position of the domain in the cross product can be seen as an attribute designation constituting a 

definition of entity while the tuples would be object instances. The same domain can occur at different 

positions and play the role of a different attribute. For example, the domain of dates would be used on a 

startDate as well as endDate attribute. 

  

A relation is a subset of the cross product. Being a subset adds meaning to the construct by including 

and excluding its members. Relational data has meaning because certain tuples are included or excluded 

in specific meaningful relations rather than arranged into a structure. This happens in the actual tables 

when certain rows are inserted/updated to reflect the true state of the world – and it happens in table-

valued relations that are produced as results of queries – because the queries impose conditions of 

interest to the user of the data.  

Operations on table valued variables 
Let’s use this simple data model – Doctor,Patient, Appointment 

• Doctor: id, name 
• Patient: id, name 
• Appointment: doctor_id, patient_id, appt_time 

Appointment 

DoctorID PatientID Appointment_time 

1 2 11am 

2 11 3pm 

2 1 2pm 

3 5 6pm 

Doctor 

DoctorID Doctor_Name 

2 Don 

3 Martin 

1 Natalie 

Patient 

PatientID Patient_Name 

2 Colleen 

11 Max 

1 Arthur 

4 Benji 

The basic operations on table-valued variables: 

• composition - FROM a JOIN b ON b.id = a.id 



• filtering – WHERE b.date > '2021-01-01' 
• projection – SELECT a.name, b.date, sum(b.amount) 
• aggregation – GROUP BY a.shipDate 

are now represented in diagrams. 

  



Composition: 

 

 

Filtering: 

 

 

  



Projection: 

 

Aggregation: 

 

 

 

 

Observations on relational operations: 

• No special entities participate in operations - just values organized in relations 

• "Types" are more types of operations rather than types of data 

• Logic resides in data – in presence/absence of tuples in relations - and in matching data values 

with themselves and with parameter values 

• Queries are pure functions – insofar as the data can be seen as constant between mutations 

• Programming is declarative – no loops – they are in the engine! 

 



Two data perspectives 

We have two views in which values appear reflecting the structure of the world – Entity-based and 

Relational view. The Entity (or Object) view best supports object-relational mapping (ORM) and entity-

relational view where entities enter into relations with each other. The Entity-based view is well suited 

to support data mutation through application of object-based business logic. The Relational view is best 

suited to querying data in their complex relations. As it handles data in the form of table-valued items 

called relations it makes this form most amenable to serialization – that is external representation and 

transfer. 

Compare worlds 

Object world features Relational world features 

 
Business/Entity objects 
Data mutation 
Data structures 
Mapping 
 
 

 
DTO objects 
Querying 
Aggregation 
Serialization 
 
 

 

 

Comparing advantages 

Object world boasts Relational world boasts 

 
logical organization around business logic 

combining methods with attributes - incl. 
mutating methods 
 

 
table is never circular 

relationships are represented as joins 

queries are definitions of functions based on 
table data 

queries are functions returning tables 

SQL has subqueries, CTEs and nested queries -
that really pass functions as arguments and chain 
query executions together 
 

 

Comparing disadvantages 

Object world lacks Relational world lacks 



 
termination of referential circularity 
enforcement of mutability conditions, by 
transactional and concurrency control 
 
 

 
aggregation into objects 
objects as database types 
generalization of relational concept w/o tying it 
to physical storage or SQL constructs 
syntactically better language than SQL 
DML consistency 
 
 

 

Summary in diagram 

 

 

 

Conclusions 

Relational world offers a foundation for functional programming 

Objects/Entities are - collections of value attributes and other object references -easily relate to 

business features, mutability defined by business methods and their contract 

Relations/Tables are - concise (normalized) expressions of relationships between values -direct business 

meaning not very clear, no definition or contract of mutability 

JSON is not so much an object notation as notation for results of complex relational operations, such as 

aggregation and composition 

 

 


	Introduction
	The world of data is the world of values - reflecting the real world (to the degree of interest to the application at hand):
	Functional programming and functions are around transformations of values.
	Cross product of domains – what is it?
	Operations on table valued variables
	Two data perspectives


